{-ADIC REPRESENTATIONS ASSOCIATED TO MODULAR
FORMS OVER IMAGINARY QUADRATIC FIELDS

TOBIAS BERGER AND GERGELY HARCOS

ABSTRACT. Let 7 be a regular algebraic cuspidal automorphic representation
of GL2 over an imaginary quadratic number field K, and let ¢ be a prime
number. Assuming the central character of 7 is invariant under the non-trivial
automorphism of K, it is shown that there is a continuous irreducible ¢-adic
representation p of Gal(K/K) such that L(s, py) = L(s, ) whenever v is a
prime of K outside an explicit finite set.
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1. INTRODUCTION

Let K be an imaginary quadratic field with non-trivial automorphism ¢, and
let m be a cuspidal automorphic representation of GLa(Ak) with unitary central
character w. If 7o, has Langlands parameter W = C* — GL3(C) given by z —
diag(z' =%,z %) for some integer k > 2 (that is, in the sense of Clozel [4], 7 is any
regular algebraic cuspidal automorphic representation up to twist), then by the
Langlands philosophy 7 should give rise (for any prime number ¢) to a continuous
irreducible f-adic representation p of the Galois group Gal(K/K) such that the
associated L-functions agree. In other words, at each prime v of K the Frobenius
polynomial of p at v agrees with the Hecke polynomial of 7 at v. Under the
assumption that w = w it is possible to relate m to holomorphic Siegel modular
forms via theta lifts and deduce (using ¢-adic cohomology on Siegel threefolds)
some weak version of this predicted correspondence. In fact Taylor [18] managed to
obtain the above equality of Frobenius and Hecke polynomials for all v outside a zero
density set of places, but he had to make some additional technical assumptions. It
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is our aim here to describe how the results of Friedberg and Hoffstein [7] on the non-
vanishing of certain central L-values and those of Laumon [9, 10] and Weissauer
[21] on associating Galois representations to Siegel modular forms enable one to
remove these technical assumptions and conclude the statement for all v outside an
explicit finite set. Precisely, we shall prove the following

Theorem 1.1. Assume that w = w®. Let S denote the set of places in K which
divide £ or where K/Q or m or w° is ramified. There exists a continuous irreducible
representation p : Gal(K /K) — GLo(Q,) such that if v is a prime of K outside S
then p is unramified at v and the characteristic polynomial of p(Frob,) agrees with
the Hecke polynomial of m at v, that is, L(s,p,) = L(s, ).

Remark 1.2. Throughout the paper we write Frob, for the geometric Frobenius
and we shift-normalize all L-functions such that s = 1/2 is their center.

Remark 1.3. This theorem strengthens Theorem A of [18]. The assumption w = w®
is inherent to Taylor’s method; one would hope to remove this condition by other
methods.

Remark 1.4. By [16, Lemma 6] the Galois representation takes values in GLa(FE)
for a finite extension E/Qy (see [18, p. 635] for an explicit description).

Remark 1.5. There are two cases in which Theorem 1.1 is known to hold (cf. [18,
Lemmata 1 and 2]):

1. 7 ® § =2 7 for some non-trivial quadratic character § of K. In this case if
L/K denotes the quadratic extension corresponding to ¢ then there is an
algebraic idele class character ¢ of L unequal to its conjugate under the
non-trivial element of Gal(L/K) such that 7 is the automorphic induction
of ¢ to K; the conclusion of Theorem 1.1 follows by work of Serre [14].

2. Qv = (r®v)° for some finite order character v of K. In this case a twist
of 7 is a base change from Q; the conclusion of Theorem 1.1 follows from
work of Deligne [5].

The proof of Theorem 1.1 can be briefly outlined as follows. The initial strategy
is that of Taylor [18]. We assume we are not in a case covered by Remark 1.5. Using
the deep results of [8] and [7] we construct a non-zero theta lift on GSp,(Ag) of
the twist 7 ® pu for a “dense” set (in the sense of Definition 2.1 below) of quadratic
idele class characters p of K. The irreducible constituent II* of such a lift is
generated by a vector-valued holomorphic semi-regular cusp form on the Siegel
three-space. Using Hasse invariant forms and the theory of pseudo-representations
developed by Wiles [22] and Taylor [16, 17], Taylor had shown that one can associate
a 4-dimensional representation to II* if one could associate 4-dimensional Galois
representations to regular holomorphic Siegel cusp forms. This is now possible by
work of Laumon [9, 10] and Weissauer [21]. We obtain therefore, for each p in
some dense set, a 4-dimensional representation of Gal(Q/Q) with the same partial
L-function as the one associated to II*, and we prove that it is induced from some
2-dimensional representation p* of Gal(K/K). By exploring global compatibility
relations among the various p* we show that they can be replaced by quadratic
twists' p®@ u of a single 2-dimensional representation p of Gal(K /K), and we verify
that this p has the required property of Theorem 1.1.

1Here and later we identify finite order idele class characters with continuous Galois characters.
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Remark 1.6. Since the construction of the 4-dimensional Galois representation as-
sociated to II* involves an f-adic limit process one loses information about the
geometricity of the Galois representation. For £ split in K/Q, Urban [20, Corollaire
2] has proved, however, that if 7 is ordinary then the Galois representation p of
Theorem 1.1 is ordinary at v | £.

2. THETA LIFTS

Theorem 1 and Proposition 5 of [8] show how to construct non-zero theta lifts on
GSp,(Ag) of many quadratic twists of 7, conditional on “Conjecture/Theorem 17
[8, p. 403]. The analytic non-vanishing result of [7] implies “Conjecture/Theorem 1”.
For completeness, we decided to summarize how [7] implies a strengthening of The-
orem 1 of [8].

By assumption the central character of 7 factors through the norm map as
w = wo Ng/qg, where w is a character of Q. The ratio of the two characters w
satisfying this equation is the quadratic character corresponding to K/Q, hence
one of them is odd and the other one is even. We shall consider the character @
with @ (—1) = (=1)*. By Proposition 1 of [8] the pair (7, ) defines a cuspidal
automorphic representation of GO°(Ag), where GO is the group of orthogonal
similitudes of a certain quadratic space Wi of sign (3,1) over Q. [8] also introduces
a signature 6 = (J,), a map from the places of Q to {£1} which is 1 at all but
finitely many places such that §, = 1 whenever m, % 75 (here we view 7 as a
representation of Ry /g GLa, the group obtained from GLs by restriction of scalars).
By Proposition 2 of [8] the triple # := (7, @, ) modulo the action of {1,c} can be
identified with a cuspidal automorphic representation of GO(Ag) which in turn has
a theta lift ©(7) to GSp,(Ag). By Proposition 3 of [8] the lift ©(7) is contained in
the space of cusp forms, and if IT denotes an irreducible constituent of ©(7) then
I is a holomorphic limit of discrete series representation of weight (k, 2) whenever
000 = —1, while II,, is an unramified irreducible principal series representation with
L(s,1,) = L(s,m,) whenever ¢, = 1 and v is a rational prime which does not lie
under a prime in S. In addition, II is non-zero assuming there is a character ¢ of
K restricting to @ on Q and satisfying the following two properties?:

To 2T = b, =@y(—1)e(m, ® ¢, 1, 1/2);

Lr® e ', 1/2) £0.
Using these as preliminaries we can deduce from the non-vanishing result [7] that

T ® p gives rise to suitable II* on GSp,(Ag) for a dense set of quadratic characters
uof K.

Definition 2.1. A set M of quadratic characters of K is dense if it has the following
property. If i is an arbitrary quadratic character of K and M is an arbitrary finite
set of rational primes then there is a character p € M such that p, = fi, for all
ve M.

Definition 2.2. For a cuspidal automorphic representation 7 of GLa(Ag) let
Sk (7) denote the set of places in K which divide ¢ or where K/Q or 7 or 7°

2The non-vanishing condition for the central L-value arises in [8] by evaluating a particular
Fourier coefficient of a form in II. It is possible that this condition can be removed, that is, the
local conditions are sufficient. See the remark following the proof of [8, Proposition 3] and also a
recent result proved by Takeda [15, Theorem 1.2], building on earlier work of Roberts [11, 12, 13].



4 TOBIAS BERGER AND GERGELY HARCOS

is ramified, and let Sgp(7) denote the set of rational places which lie under some
place in Sk (7).

Theorem 2.3. There exists a dense set M of quadratic characters of K with the
following property. For each p € M there is a signature § such that the represen-
tation (m @ p,»,0) of GO(Ag) gives rise to a cuspidal automorphic representation
IT* of GSp,(Aq) satisfying:
o II# is a holomorphic limit of discrete series representation of weight (k,2);
e if v is a rational prime outside Sg(m @ ) then II¥ is an unramified irre-
ducible principal series representation with L(s,TI*) = L(s, (7 ® u)y).

To prove this let i be any quadratic character of K and let M be any finite set
of rational places. In the light of the above discussion (i.e. by Propositions 1-3 of
[8]) it suffices to show that for 7 := 7 ® [ there exist a quadratic character n of
K with n, = 1 for all v € M, a signature § with oo = —1 and §, = 1 for any
rational prime v ¢ Sg(7 ® 1), and a character ¢ of K with ¢|g = @, satisfying the
additional properties

(2 1) 5 _ &v(—l)s(frv ® nU(P1717 1/2) lf 7~TU ® 77’0 = (’ﬁ_'u ® nv)ca
' o if 7y @ 0o # (To ® 170)%
(2.2) L7 @np~',1/2) #0.
The proofs of Lemma 13 and Proposition 5 in [8] provide us with 1 and ¢ satisfying
(2.3) (oo ® ‘Pc:ola 1/2) = —0eo(—1)

and

e(Fenp ',1/2) =1
Here we used our initial assumptions for 7 and @. Theorem A and the first part
of Theorem B in [7] show that 7 can be replaced by another quadratic character
satisfying (2.2). Now we define ¢ according to (2.1). By [8, Lemma 14], §,, = +1 for
all rational primes, and d,, = 1 for all rational primes v ¢ Sgp(7 ® n). In addition,
000 = —1 holds by (2.3) combined with ficoneo = 1 and moe = 7E,.

3. 4-DIMENSIONAL GALOIS REPRESENTATIONS OF Q

In the previous section we constructed, for each quadratic character u of K in
some dense set M, a cuspidal automorphic representation IT* of GSp,(Ag) such
that II# is a holomorphic limit of discrete series representation of weight (k,2). It
has the property

LW (5,T1#) = LSW (5, I3 (7 @ p)),

where S(y) abbreviates So(m ® ), L5#) denotes the product of local L-factors
outside S(u), and I stands for automorphic induction. Note that S(y) includes
all the rational primes where II# is ramified.

In this section we shall construct, for each p € M, a continuous semisimple
representation

™ Gal(Q/Q) — GL4(Qy)
such that
LS(H)(S’TM) — LS(M)(S’HH).
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In other words, we shall show that m ® u is associated to a Galois representation
over Q. We shall rely on the following deep result of Weissauer [21] (see also the
closely related work of Laumon [9, 10]):

Theorem 3.1. Let II be an irreducible cuspidal automorphic representation of
GSp4(Ag) such that I, belongs to the holomorphic discrete series of weight (k1, k2)
with k1 > ko > 3. Let S denote the union of {{} and the set of rational primes
where 11 is ramified. There exists a continuous semisimple representation

7: Gal(Q/Q) — GL4(Qy)

such that if v is a rational prime outside S then T is unramified at v and the
characteristic polynomial of T(Frob,) agrees with the Hecke polynomial of I1 at v.
In other words,

L3(s,7) = L(s,10),
where L° denotes the product of local L-factors outside S.

This theorem was not available for Taylor in [18]; instead, he utilized the weaker
yet powerful results of [17] to conclude L°(s,7) = L(s,II) for some exceptional
set S of zero Dirichlet density. While the above theorem is not directly applica-
ble to the representations II* we can combine it with Taylor’s method of pseudo-
representations [16] to achieve our goal. Our situation is analogous to associating
2-dimensional Galois representations to elliptic cusp forms of weight 1 which was
accomplished by Deligne—Serre in the classical paper [6] by a technique involving
lifting the weight and then applying a “horizontal” family of congruences.

Let f be a Hecke eigenform belonging to II#: it is a vector-valued holomorphic
semi-regular Siegel cusp form of weight (k,2) and some level N (i.e. IT* is rami-
fied exactly at the primes dividing N). Let 4" (Z) be the Z-algebra generated
by the Hecke operators corresponding to primes not dividing N and denote by
T(khkz)(N) the image of N (Z) in the space of holomorphic Siegel cusp forms of
weight (K1, k2) and level N (see [16, p. 315] for precise definitions). It is known that
T(kl) ko) (V) ®Q is a semisimple Q-algebra. In particular, we have a homomorphism
Af : Tir2)(N) — Of such that T(f) = Ap(T)f for all T € N (Z), where Oy is
the ring of integers of some (minimally chosen) number field Ey.

Using the cup product of f with the ¢"-th power of the “Hasse Invariant” form
exhibited by Blasius and Ramakrishnan® [3, Proposition 3.6], Taylor [16, Proposi-
tion 3] constructs a “vertical” family of morphisms®

Aot T2y rmen (e—1,0-1)(N) — Oy /071
such that
M (T) =M (T) mod " T e N (7).

Here m = m(¥) is a positive integer and n is an arbitrary positive integer. Together
with Theorem 3.1 this allows us to apply the theory of pseudo-representations, as
in Example 1 in [16, §1.3], to piece together the required Galois representation 7+
corresponding to IT#.

3Ramakrishnan has pointed out to us that there is a mistake in [3], but it does not affect the
part we are using.

4We assume here that N > 3 to ensure that the corresponding Siegel modular variety is “nice”
as in [16, §3.2-3.3], otherwise we replace N by N¢2, say.
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4. 2-DIMENSIONAL (GALOIS REPRESENTATIONS OF K

We have exhibited, using previous notation, continuous semisimple representa-
tions

™ Gal(Q/Q) — GL4(Qy), weM,
satisfying

(4.1) LW (s, 74) = LW (s, I ( @ ).

Note that S(p) includes all the rational primes where IT* is ramified. Here I}Qg)(ﬂ@) )
is a cuspidal automorphic representation of GL4(Ag) in the light of our initial
assumption that 7 ® pu % (7 @ )¢ (cf. Remark 1.5 and the proof of [1, Theorem 6.2
in §3.6]), therefore 7* is expected to be irreducible by [19, Conjecture 3.3] and the
Chebotarev density theorem.

If x denotes the quadratic character of QQ corresponding to K, then it is known
that (cf. proof of [1, Theorem 6.2 in §3.6])

IR(r@p) @ x = I (r @ p).
For our purposes here it suffices, however, to regard I%(ﬂ' ® p) a purely formal

object, i.e. a set of Langlands parameters satisfying [1, (6.1)—(6.2) in §3.6] outside
S(p), for such an object clearly satisfies

LW (s, I (r @ p) ® x) = LW (s, I (7 @ ).
At any rate, by (4.1) and the Chebotarev density theorem we can infer
(4.2) ™y = TH
This implies the following

Lemma 4.1. For each i € M there is a continuous semisimple representation
P Gal(K/K) — GL(Qy)

such that
TH = Ind%(p").

Proof. Suppose first that 7# is irreducible over Q. Then Hom(y, 7#® (7#)V) # 0 by
(4.2). Since 7@ (7)Y = End(7#), we see by Schur’s Lemma that 7#|k is reducible
as x| is trivial. Let p* be an irreducible component of 7#|k of minimal dimension
(i.e. at most 2). By Frobenius reciprocity Hom(Ind%(p“),T“) # 0, hence in fact
TH & Ind%(p“) since 7# is irreducible of dimension 4 and Ind%(p“) is of dimension
at most 4.

Suppose now that 7# is reducible over Q. If A (resp. () is a 1-dimensional
(resp. 2-dimensional) representation occurring in 7+, then (4.2) shows that Ay
(resp. B ® x) also occurs in 7#. Hence there are four cases to consider:

1. ™2 3& (8®x). Then 7+ & Ind%(mK).

2. 7" = B ® v, where both 8 and v are y-invariant. Then (§ = Ind%(m) and
v Ind%(u) for some 1-dimensional x and v, so that 7# = Ind%(n D).

3. THE B AB Y. Then 6= (R x,s0 0= Ind%(,‘i) for some 1-dimensional
ki and 7 = Ind% (k @ Nk ).

4. TP AD A G v @vy. Then 7 = nd2 (A x @ v|k).
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5. COMPATIBILITY OF TWISTS

So far we have constructed, for each quadratic character p of K in some dense
set M, a continuous semisimple representation

p": Gal(K/K) — GL2(Qy)
such that
LW (5, mmd% (p*)) = LW (s, IE (7 @ ),
where S(u) abbreviates Sg(m ® p) and both sides involve Euler factors of degree
4 over Q. As we want to compare Euler factors over K it is useful to rewrite the
previous equation (using restriction and base change) as

(5.1) LW (s, p") L5 (s, (p")%) = LW (s,m @ p) LW (s, (m @ p)°),

where now S(u) abbreviates Sk (7 ® p) and all L-functions involve Euler factors of
degree 2 over K. Note that S(u) includes all the rational primes where p* or (p#)°
is ramified.

Our aim is to show that the Galois representations p# are globally compatible
in the sense that they can be replaced by twists p ® p of some fixed p. This will be
achieved in three lemmata. Recall our assumption that we are not in a case covered
by Remark 1.5.

Lemma 5.1. p“|p, is irreducible for all n € M and all quadratic extensions LK.

Proof. Assume that p*|y, is reducible for some p € M and some quadratic extension
L/K. Let ¥ be an irreducible summand of p#|, and for a prime v of K outside S(u)
let {«, 3, } denote the Langlands parameters of 7® u. By continuity ¥ takes values
in a finite extension E of Q. Applying restriction and base change in (5.1) we see
that if w is a place of L lying above a place v of K outside S(u) U disc(L/K) then
WU(Frob,,) € {(a)?,(B)F, (ale)f, (B.)T}, where f = (L, : K,). Hence in fact
U(Frob,,) is either one of the Langlands parameters of the base changes (7 ® u)r,
or (m® u)§ at w. Applying the results of [18, §3] we conclude that (7 ® u), is not
cuspidal which by [18, Lemma 2] means that we are in Case 1 of Remark 1.5. This
contradiction proves the lemma. O

Lemma 5.2. Let p € M and let § be a quadratic character of K.

1. p* ®§ 2 pt for § non-trivial.
2. pF @462 (p*)° in all cases.

Proof. Assume first that § is non-trivial, and denote by L/K the corresponding
quadratic extension.

Assume that p* ® § = p*. Then Hom(d, p* ® (p*)Y) # 0. Since p" ® (p")V =
End(p"), we see by Schur’s Lemma that p*|y is reducible as d|z, is trivial. This is
a contradiction to Lemma 5.1 and establishes the first part of the lemma.

Assume that p* ®§ = (p)°. Then (p*)°®35° = p#, hence in fact p* ® (§6¢) = pH.
By the first part of the lemma this forces §0¢ = 1, hence 6 = §° since § is quadratic.
This implies, using (5.1), that

L7 (s, 0" @ 6)L7 (s, (o © 6)°) = LT (s, @ ud) L" (s, (x ® i6)°),

where T is a finite set of primes in K containing S(u). Using again the assumption
Pt @6 = (p)° we obtain

L7 (s, (o)) L" (s, p) = LT (s, © ud) L" (s, (w @ pi6)°),



8 TOBIAS BERGER AND GERGELY HARCOS

hence by (5.1), multiplicity one, and base change, we have in fact
I (n ® ud) = I (7 @ p).

Base changing this to K and comparing the cuspidal representations (in the isobaric
sums), we are forced to have

(5.2) T s = (@ p)°,

since 7 ® pd =2 m ® p falls under Case 1 of Remark 1.5. Here § = 0¢, so there is
a quadratic character e of Q such that 6 = €|x. Regarding ¢ and e as idele class
characters, ¢ is the pull-back of € by the norm map Ng/,q and so its restriction to
the idele classes of Q is the trivial character. Regarding § as Galois character this
means that its transfer to Gal(Q/Q) is trivial. It follows from Hilbert’s theorem 90
(as in the proof of [18, Lemma 1]) that we may write § = v/v° for some character
v of K. Plugging this in (5.2) we obtain

T = (T ),
hence we are in Case 2 of Remark 1.5. This contradiction establishes the second
part of the lemma for non-trivial 4.
It remains to prove the lemma for trivial d, i.e. that p* 2 (p*)¢. However, this is

immediate from (5.1) and the multiplicity one theorem since we are assuming that
TR pE (T uc. O

Lemma 5.3. There is a continuous semisimple representation
p: Gal(K/K) — GL2(Qy)
which is unramified outside S and for all p € M satisfies
Pl () = (pep) e (pep.

Proof. For any quadratic character \ write 6y := A\°. Let p* := p*®@pu~!. Our goal
is to show that either p* or (p*)°d, is independent of i € M. For any prime v ¢ S
denote by {a,, 5y} the set of inverse roots of the Hecke polynomial of 7 at v; then
for any prime v ¢ S(u) the set of eigenvalues of (p* @ (p*)¢)(Frob,) - (u=1)(v) =
(7 ® (5)°6,.)(Frob,) is

{Olva /6)1)7 Qe 5;/, (U)7 Bvcéu(v)}

by (5.2).

Given pu, p’ € M the corresponding set of eigenvalues coincide over the splitting
field F' := K(6,0,/) of degree at most 2. By the Chebotarev density theorem and
continuity, so do their characteristic polynomials. Viewing the representations as
Q;[Gal(K/K)]-representations, a general theorem on semisimple modules of alge-
bras over fields of characteristic 0 [2, Ch. 8, Sec. 12.2, Prop. 3] then tells us that
their semisimplifications are isomorphic. But since the p* are semisimple, so is the
restriction to the normal subgroup Gal(K /F) and we get
(53) (7 @ (#)°0)|F = (5" @ () 8) .

By Lemma 5.1, p#|p is irreducible so either we have p#|p = p*|p or we have
(P*)o,|p = 7" |p. Let us fix some element o € M, and for each y € M such
that the second case holds for p' = o replace p* by (p*)°6,, (this corresponds to
replacing the original p* by (p*)¢ which is legitimate). By this change we have
achieved that p'|p = p'o|p for all p € M, that is, pt = pHo ® ¢, ,,, for some
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character ¢, ,, of Gal(F//K). We shall regard v, ,, as a quadratic character of
Gal(K/K) trivial on Gal(K/F).
Note that v, ,,, = 1, so that for general u, ' € M the definition

(5.4) Y = Yppo ¥V’ o
is unambiguous. This character satisfies
(55) /3# = ﬁ'u X 1#“,“',

whence Lemma 5.2 tells us that in (5.3) we must have p*|p = p#|p for F =
K(6,6,/) and v, ,» must be trivial on Gal(K/F). It follows that ¢, , = 1 or
Yy = 6,0,, since these are the only characters of Gal(K /K) trivial on Gal(K /F).
We claim that either ¢, ,» =1 for all u, ' € M or 4, v = 6,0, for all u, ' € M.
Assume the first alternative fails then there are p1, o € M with ¥, 4, = 9,,6,, #
1. For arbitrary u € M we have ¢, ., Yp po = Vo Vuz.pwo = Py e By (5.4), hence
Yy 7 Yyps- Therefore ¥, ,, = 0,0, or ¥, u, = 6,0,,. In fact these equations
are equivalent since the two sides have equal products by (5.4), namely

Vuir Vppr = Cpia o Pz oo = Pur iz = Oy O
We infer that 1, ,, = 0,0, is valid for all u € M. This implies, for all p, p € M,

wu,u’ = 7%,#01/}#’,;10 = ¢u7u1 1/’#”#1 = 5u5u’-

If ¢, = 1 for all p,p/ then (5.5) implies that p* is independent of . If
Yu = 0,0, for all p,p then (5.5) implies that (p*)°d, is independent of p. In
both cases we denote the common value of these representations by p and verify
that it satisfies the required properties. (I

6. END OF PROOF

We have shown that there is a dense set M of quadratic characters of K (see
Definition 2.1) and a continuous irreducible semisimple representation
p: Gal(K/K) — GLy(Q,)
unramified outside S such that for any p € M we have
(61) LS (s,p u) LW (s, (p@ p)°) = L5 (s, 7 @ ) L5 (s, (r @ 1)),

where S(p) abbreviates Sk (7 ® ) (see Definition 2.2). Note that S(u) is contained
in the union of S and the set of primes in K where p or u° is ramified.

For any prime v of K outside S denote by {a,,3,} the set of inverse roots of
the Hecke polynomial of 7w at v and by {7y, d,} the inverse roots of the Frobenius
polynomial of p at v. We shall regard these as multisets (i.e. sets with multiplicities).
By (6.1) for all 41 € M unramified at v and v® we have (as multisets)

{roru(v); 0op(0), yoe (%), Sve p(v°) } = {wp(v), Boa(v), ctve p(v°), Boe p(v) }-

We need to show that (as multisets)

(6.2) {Vv, 00} = {w, B} and {Yve,0pe } = {ape, Bue }

If v is inert then the statement is trivial by the existence of some y € M that is
unramified at v = v°.

If v is split then we can find pi, 2 € M unramified at v and v® such that
w1 (v) = p1(ve) but ps(v) # ua(ve). It follows that (as multisets)

(63) {’)/1;7511,’}/1;0,51)6} = {avaﬂvaavcvﬂvc}
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and

(64) {’71), 61}7 —Yve, _5UC} = {am ﬁvv —Qye, _Bvc}-

By forming the sums of both multisets and then adding and subtracting the two
resulting equations we conclude that

(6.5) Yo + 0y = oy + By and Yoo + Ope = Qpe + Bye.

By forming the reciprocal sums of both multisets and then adding and subtracting
the two resulting equations we conclude that

(6.6) vt =yt 48 and gl 0 = agd 4 6

Let us focus on the left hand sides of (6.5) and (6.6). If the left hand side of
(6.6) designates a non-zero common value then we divide by it the left hand side of
(6.5) and obtain v,0, = a,0,. Together with the left hand side of (6.5) this yields
{Yv, 00} = {@w,Bv}, hence in fact the entire (6.2) upon using (6.3) again. In the
same way (6.2) follows if the right hand side of (6.6) designates a non-zero common
value.

We are left with the subtle case when both sides of (6.6) designate zero as
common value. Then (6.3) and (6.4) simplify to the same multiset equation

(67) {'Ym —Yovs Yves _'ch} = {am — Oy, Qe _avc}
and (6.2) simplifies to

(6.8) 2 =a? and V2. = a?..

v

We need to deduce (6.8) from (6.7). Taking squares in (6.7) and halving multiplic-
ities we see that it really is equivalent to the multiset equation

(6'9) {’73’71210} = {0437 aic}'
Now we observe that in the present situation

a? = —w) = —w) = a2,

whence in fact (6.9) yields

2 _ 2 _ _
Yo = Tve = Oy = Qe

[\~
™)

so that (6.8) holds as needed.
The proof of Theorem 1.1 is complete.
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